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Sliding mode guidance laws for intercepting high speed targets in a novel head-pursuit
engagement are presented. The guidance laws impose a geometric relation that positions
the interceptor missile ahead of the target, on its flight trajectory, so that both fly in the
same direction. The missile speed is planned to be lower than that of the target, and there-
fore the target closes in on the interceptor missile. Using this approach the closing speed
is significantly reduced relative to a head-on engagement; and compared to a tail-chase
engagement, the low closing speed is achieved with reduced energy requirements. The
guidance laws are derived for an aerodynamically controlled endo-atmospheric interceptor
as well as for an exo-atmospheric kill vehicle controlled by divert thrusters. Simulation
results confirm the viability of the proposed sliding mode guidance laws in several repre-
sentative engagements against maneuvering high-speed targets.

Nomenclature

a normal acceleration
e deviation from the geometric rule
K speed ratio
L Lyapunov function
m mass
n guidance constant
q discrete SMC design parameter
r range
u discrete controller
V speed
∆T pulse maximum duration
∆ modeling error
δ instantaneous interceptor direction of flight relative to the LOS.
ε discrete SMC design parameter
γ flight path angle
λ line of sight angle
µ gain
σ sliding variable
τ time constant
θ instantaneous target direction of flight relative to the LOS.

Subscripts
c continuous
d discrete
eq equivalent
I interceptor
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r radial
T target
uc uncertainty
λ perpendicular to LOS

Superscripts
c command
max maximum

Abbreviations
DPP deviated pure pursuit
HP head pursuit
KV kill vehicle
LOS line of sight
PN proportional navigation
PP pure pursuit
SMC sliding mode control

I. Introduction

Interception of high speed targets such as ballistic missiles is a formidable challenge. Several anti-ballistic
missile systems were developed in recent years for this task using intercepting missiles that are launched

from the protected territory against the incoming threats. The interception in these scenarios is typically
head-on, with very high closing speeds. This imposes severe requirements on the interceptor systems such
as precise detection of the target from large distances by the onboard seekers, and very fast response time
of the missile subsystems.

To overcome these difficulties, a different approach was suggested in Ref. 1, where the interceptor velocity
is matched with that of the target by a preliminary maneuver. If the target path is predictable, as in the
case of ballistic missiles, the maneuver is designed such that the interceptor missile is positioned ahead of the
target on its predicted flight path, flying in the same direction but at a slightly lower speed. This way the
target closes in on the interceptor that is conducting the necessary lateral maneuvers to achieve interception.
The interceptor speed along the target future path can be selected to achieve a desired closing rate. A similar
low closing speed can be obtained in a tail-chase scenario. However, tail-chase requires that the interceptor
will be faster than the target and therefore more energy is needed during the preliminary maneuver to reach
the desired chasing speed. This energy difference is significant in the ballistic missile defense scenario due to
the high speed of the typical targets.

Various guidance methods have been examined for implementation in the different stages of exo or endo
atmospheric interception scenarios of ballistic missiles. Some of these methods are described next. In Ref.
2 a modified version of proportional navigation (PN) guidance law3 was proposed for implementation in
the coast phase. A variable bias was applied to the actual line-of-sight (LOS) to account for engine burn.
The terminal guidance in a hyper-velocity exo-atmospheric orbital interception was studied in Ref. 4. The
control energy expenditure is reduced by constraining the expected final state to a function of the estimation
error. An optimal guidance algorithm was proposed in Ref. 5 for the interception of a non-maneuvering
target decelerated by atmospheric drag. Its implementation requires knowledge on many scenario states,
obtained from a nonlinear state estimator. In a recent paper6 a differential game guidance law was proposed
against targets having known speed and lateral acceleration limit profiles. It was shown that in a ballistic
missile interception scenario such a guidance law provides a significant improvement in the homing accuracy
compared to a guidance law derived based on a model with constant velocities and lateral acceleration limits.
Although all of the above mentioned guidance laws may provide interception in some scenarios, the actual
geometry of the engagement is not imposed. It is a result of the specific initial conditions, target maneuvers,
and guidance law used.

The simple guidance law of pure pursuit (PP) and its derivative deviated PP (DPP)7 can impose a
final interception geometry. In PP the interceptor is aimed at the target and it is intercepted from its
rear.8 The DPP guidance law is an extension of PP in that the missile is aimed at a constant lead angle
to the target and the target is intercepted from a constant angle, dependent on the lead angle and speed
ratio.7 Such guidance laws require minimal knowledge of the interception state variables and future target
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maneuvers. However, they impose severe maneuver requirements from the interceptor (especially PP) and
require a velocity advantage of the interceptor. Imposing an impact angle can also be performed by a circular
navigation guidance law.9 The name of this guidance law comes from its basic principle of following an arc
of a circle to the target. A more complicated guidance law that can impose initial and final flight path angles
was introduced in Ref. 10. The algorithm requires the solution of a two point boundary value problem and
thus can be implemented against targets with known trajectories.

Imposing the impact angle alone will not enable following the unique geometry outlined in Ref. 1. It is
also needed that the target’s head will be hit while the interceptor has a speed disadvantage. In a recent
paper by the authors11 it was shown that by maintaining a simple geometric rule, the trajectory proposed
in Ref. 1 can be achieved. The term head pursuit (HP) was coined to indicate that interception is aimed
at always hitting the target’s head. In essence the proposed geometric rule is equivalent of being in sliding
mode.

The sliding mode control (SMC) methodology is a well known method described in many papers and
textbooks.12–14 It is an intuitive and simple robust control technique, addressing highly nonlinear systems
with large modeling errors and uncertainties. The SMC methodology has been successfully used in vari-
ous guidance applications. A missile guidance law in the class of PN, derived using the SMC approach,
was proposed in Ref. 15. The sliding surface was selected to be proportional to the LOS rate and the
target maneuvers were considered as bounded uncertainties. Using numerical simulations, the superiority
of the proposed guidance law over the conventional PN was advocated. In Ref. 16 an adaptive sliding
mode guidance law was derived. Using analysis and simulations, robustness to disturbances and parameter
perturbations was shown.

In this paper we develop HP sliding mode guidance laws for an aerodynamically controlled endo-atmospheric
interceptor as well as for an exo-atmospheric kill vehicle controlled by divert thrusters. The continuous and
discrete time controllers enable maintaining the geometric relation that leads to the particular HP engage-
ment. In the next section, the HP interception engagement is outlined and the required geometric relations
are described. Then, sliding mode controllers are developed both for the continuous and discrete cases.
Following, the performance of the proposed SMC HP guidance laws is examined through simulation and the
results show the viability of the proposed designs. Concluding remarks are offered in the last section.

II. Head Pursuit Interception

The schematic view of the proposed engagement outline is shown in Fig. 1. The interceptor trajectory
has three stages: first stage for approach, second for trajectory bending and third, endgame, in which the
kill vehicle (KV) conducts final corrective maneuvers. The missile is launched towards the ballistic target
in a head-on trajectory, and at a predetermined time is steered to bend its flight trajectory until reaching
a so-called trajectory matching flight mode. The drawing illustrates exo-atmospheric interception in which
thrust is used to achieve trajectory bending and end-game maneuvers.

In the beginning of the endgame phase the interceptor is flying close to the target predicted trajectory,
ahead of the target but at a lower speed. The objective of the endgame guidance is to correct the position
and flight direction errors. Note the unconventional final geometry in which the target approaches the
interceptor from its rear end. Using this approach the closing speed is significantly reduced relative to
a head-on engagement; and compared to a tail-chase engagement, the low closing speed is achieved with
reduced energy requirements. Such geometry also relaxes the requirements from the interceptor seeker dome
since it is not exposed to the high aerodynamic heating. However, it requires special adaptation of the kill
mechanism.

A roll controlled interceptor is considered in this paper. For the relatively short time interval of the
endgame (with small changes in the flight direction) the motion of such an interceptor can be separated into
two perpendicular channels and the guidance problem can be treated as planar in each of those channels.
The planar endgame geometry is shown in Fig. 2. The target T is located behind the slower interceptor I.
The speed, maneuvering acceleration, and flight path angle are denoted by V , a, and γ, respectively; the
range between the target and interceptor is r, and λ is the LOS angle relative to a fixed reference. The
angles θ and δ are the instantaneous target and interceptor direction of flight relative to the LOS.

The engagement kinematics is expressed in a polar coordinate system (r, λ) attached to the target

ṙ = Vr (1a)
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Figure 1. Head pursuit scenario.
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Figure 2. Planar engagement geometry.
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λ̇ = Vλ/r (1b)

where the closing speed Vr is
Vr = VI cos δ − VT cos θ (2)

and the speed perpendicular to the line of sight is

Vλ = VI sin δ − VT sin θ (3)

We assume that the interceptor and target speeds, VI and VT , are constant and define the non-dimensional
parameter K as the speed ratio

K = VI/VT < 1 (4)

Note that we analyze a HP interception scenario in which the interceptor is designed with a speed disadvan-
tage.

The lateral accelerations aI and aT determine the interceptor and target trajectories

γ̇I = aI/VI (5a)
γ̇T = aT /VT (5b)

where the flight path angles γI and γT satisfy

γI = λ + δ (6a)
γT = λ + θ (6b)

Using Eqs. (5),(6) we obtain

δ̇ = aI/VI − Vλ/r (7a)
θ̇ = aT /VT − Vλ/r (7b)

It is required that near interception (r → 0) both interceptor and target will fly in the same direction,
along the LOS. Thus, the objective of the guidance law is to impose

θ(r → 0) ≈ 0 (8)

and
δ(r → 0) ≈ 0 (9)

By maintaining the interception lead angle proportional to the target flight direction relative to the LOS
the unique HP geometry can be attained. This geometric rule is

δ = nθ (10)

where n is the guidance constant.
The conditions for perfect intercept given an ideal HP scenario with no target maneuvers and interceptor

maneuver dynamics and bounds is given in the next two theorems.

Theorem 1. Against a non-maneuvering target, a necessary condition for performing the HP interception
is

n > 1/K (11)

Proof: see Ref. 11. ¤

Theorem 2. Against a non-maneuvering target, and given n > 1/K, the sufficient condition for performing
the HP interception is

|θ| <
√

6
Kn− 1
Kn3 − 1

(12)

Proof: see Ref. 11. ¤
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III. Continuous Time Head Pursuit Guidance

In this section we analyze an endo-atmospheric HP interception scenario with modeling errors and target
maneuvers. We assume that both adversaries have aerodynamic control surfaces and thus the interception
problem can be analyzed in continuous time. The derivation is performed using the sliding mode approach
in continuous time.

A. Background

Most of the early works on sliding mode control was with respect to continuous time systems.17 The controller
is obtained by converting an n-th order tracking problem to a first order stabilization problem. The design
is performed around a sliding surface commonly denoted by σ = 0, where the sliding variable σ is a function
of the system tracking error and possibly its derivatives. The problem is to drive the scalar quantity defining
the sliding surface to zero, and maintain it there, ultimately achieving exact tracking. When the system
response is confined to the sliding surface, it is said that the system is in a sliding mode.

Next, we present the adversaries dynamics, define the continuous sliding variable and derive the contin-
uous time sliding mode HP controller.

B. Dynamics

We assume that both the interceptor and target closed loop dynamics can be represented by equivalent first
order transfer functions

ȧI = (ac
I − aI) /τI + ∆I (13)

ȧT = (ac
T − aT ) /τT + ∆T (14)

where τI and τT are the respective interceptor and target time constants; and ∆I , ∆T are their bounded
modeling errors.

|∆I | ≤ ∆I (15)

|∆T | ≤ ∆T (16)

We also assume that the target’s acceleration command is bounded

|ac
T | ≤ amax

T (17)

C. Sliding Variable

We define the deviation from the geometric rule of Eq. (10) as

e = δ − nθ (18)

Since the relative degree of this error with respect to the control command is two, the sliding variable should
include a first derivative of the error e. This will guarantee that the control will have direct effect on the
sliding surface. Thus, the SMC sliding variable, for the continuous case, is defined as

σc = e + τ ė (19)

The time constant τ can be selected such that the error e diminishes to zero at the required rate, regardless
of the value of the control. Substituting Eqs. (5), (6), and (18) in Eq. (19) we can write the sliding variable
as

σc = γI − nγT + (n− 1)λ + τ [aI/VI − naT /VT + (n− 1)Vλ/r] (20)

The dynamics of this sliding variable is

σ̇c = aI/VI − naT /VT + (n− 1)Vλ/r

+τ [(ac
I − aI)/τI/VI + ∆I/VI − n(ac

T − aT )/τT /VT − n∆T /VT ]
+τ(n− 1)(V̇λr − VλVr)/r2 (21)

where Vr and Vλ are given in Eqs. (2),(3) and

V̇λ = aI cos δ − aT cos θ − VλVr/r (22)
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D. Sliding Mode Controller

The sliding mode controller ac
I consists of an equivalent part denoted ac

Ieq and an uncertainly part denoted
ac

Iuc, where
ac

I = ac
Ieq + ac

Iuc (23)
The equivalent controller is designed to maintain the system on the sliding surface, by imposing σ̇ = 0 in

the absence of modeling errors and target maneuvers. Thus, from Eq. (21) with ∆(·) = 0 and ac
T = 0 we

obtain
ac

Ieq = fIaI + fT aT + fλλ̇ (24)
where

fI = 1− τI/τ − τI(n− 1)VI cos δ/r (25)
fT = Kn(τI/τ − 1)− VI(n− 1)τI cos θ/r (26)

fλ = VIτI(n− 1)(2Vr/r − 1/τ) (27)
Modeling errors and target maneuvers will cause the system to depart from the sliding surface. The

uncertainty controller is designed to drive the system to the sliding surface in finite time in the face of
these errors and uncertainties. Here, the design of the uncertainty controller is based on the model of the
interceptor and target dynamics and the bounds given in Eqs. (13)-(17). We select the uncertainty controller
in the form

ac
Iuc = τIVIµcsign(σc) (28)

The gain µc is obtained from analyzing the following candidate Lyapunov function

Lc =
1
2
σ2

c (29)

Using the time derivative of this candidate Lyapunov function, the well-known reaching condition is obtained

L̇c = σcσ̇c < 0 (30)

This derivative with the equivalent and uncertainty controllers of Eqs. (24), (28), is

L̇c = σcσ̇c = τσc [µcsign(σc) + ∆I/VI − n∆T /VT − nac
T ] (31)

Using the bounds from Eqs. (15)-(17) this derivative can be bounded by

L̇c ≤ τ |σc|
[
µc + ∆̄I/VI + n∆̄T /VT + namax

T

)
(32)

To obtain finite time convergence to the sliding surface we choose

µc < − [
∆̄I/VI + n∆̄T /VT + namax

T

)
(33)

such that negative definiteness of the Lyapunov function is ensured. Note that the gain µc is proportional
to n. To obtain the largest interception envelope, n should be chosen based on the results of Ref. 11.
Nonetheless, it should not be chosen too large so that the interceptor’s maneuver capability will not be
exceeded.

IV. Discrete Time Head Pursuit Guidance

In space applications, control is achieved by divert thrusters that are typically on-off with constant level
of thrust. For this type of application, we derive a discrete sliding mode controller.

A. Background

Techniques to design discrete time sliding mode controllers were proposed in Ref. 18 and 19. Since in
discrete time exact tracking of the sliding surface can not be obtained the notion of quasi-sliding mode was
introduced.20 It has three attributes:21 A1) The trajectory, starting from the initial conditions, monoton-
ically approaches the switching surface and crosses it in finite time, A2) In successive sampling periods
the trajectory crosses the switching surface, resulting in a zigzag motion around the switching surface, A3)
The distance from the switching surface is non-increasing and the trajectory stays within a specified band.
Conditions to ensure discrete sliding mode were derived in Ref. 20 and 22.

Next, we present the adversaries dynamics. Then, we define the discrete sliding variable. This is followed
by the derivation of the discrete time sliding mode HP controller.
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B. Dynamics

We assume that in an exo-atmospheric interception scenario the interceptor and target maneuvers are with
instantaneous, ideal, dynamics such that

aI = ac
I (34a)

aT = ac
T (34b)

where ac
T is the bounded target’s acceleration (see Eq. (17)). We assume that the acceleration of the

interceptor is obtained using on-off divert thrusters with a constant thrust level T0. Thus, the level of the
missile on-off acceleration is

amax
I =

T0

m
(35)

where m is the interceptor’s current mass. The missile controller is u representing the amount of time and
direction the thrusters will be open in the next interval ∆T . Thus,

|u| ≤ ∆T (36)

C. Sliding Variable

The relative degree of the error (Eq. (18)) to the interceptor’s control command is one. Thus, we define the
discrete sliding variable as

σd = e = δ − nθ (37)

Considering the discrete nature of the problem and substituting Eqs. (6) we can write

σd(k) = γI(k)− nγT (k) + (n− 1)λ(k) (38)

D. Sliding Mode Controller

The discrete equivalent of the reaching condition from Eq. (30) is

[σd(k + 1)− σd(k)]σd < 0 (39)

However, as pointed out in Ref. 20, Eq. (39) is a necessary condition for discrete sliding mode but it is not
sufficient, as the trajectory may zigzag around the sliding surface with increasing magnitude. Thus, in Ref.
22 the following reaching condition was suggested

|σd(k + 1)| < |σd(k)| (40)

which is equivalent to the condition19

Ld(k + 1) < Ld(k) (41)

where Ld is the discrete equivalent of the continuous time candidate Lyapunov function from Eq. (29).
To meet the conditions from Eqs. (40),(41) Gao21 suggested the following reaching law

σd(k + 1)− σd(k) = −q∆Tσd(k)− ε∆Tsign[σd(k)] (42)

where ε, q are design parameters selected such that ε > 0, q > 0, and 1− q∆T > 0.
Using Eqs. (5), (7), (38) we obtain the following expression for σd(k + 1)

σd(k + 1) = σd(k) +
T0/m

VI
u−∆aT +

(n− 1)Vλ(k)
r(k)

∆T + ∆e (43)

where
|∆aT | ≤ ∆̄aT ; ∆̄aT = namax

T ∆T/VT (44)

and ∆e is the bounded series expansion error

|∆e| ≤ ∆̄e (45)
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Substituting Eq. (43) in (42) we obtain the required duration and direction the on-off divert thrusters must
be operated

ureq =
VI

T0/m

[
∆aT − (n− 1)Vλ(k)

r(k)
∆T −∆e− q∆Tσd(k)− ε∆Tsign(σd(k))

]
(46)

Since ∆aT and ∆e are uncertainties only their bounds are known a priori. Also, the thrusters operation
duration is bounded by ∆T . Thus, we choose the following controller

u = ∆Tsat

[
VI

T0/m

(
− (n− 1)Vλ(k)

r(k)
− qσd(k)− (ε + ∆̄aT /∆T + ∆̄e/∆T )sign(σd(k))

)]
(47)

where sat is the standard saturation function.
Note that only if there are no uncertainties (i.e. ∆aT = 0 and ∆e = 0) and if the control does not saturate

then it can be ensured that the system can remain in quasi sliding mode (i.e. within a non increasing band
around the sliding surface). Note that if ∆T → 0 then it is ensured that the system will remain in ideal
sliding mode after the sliding surface is reached.

V. Performance Analysis

In this section a scenario with a maneuvering target is studied using simulations. Two different intercep-
tors are examined: one with a continuous controller and the other employing a bang-bang maneuver device.
In both cases perfect information is assumed.

The simulation parameters for the endo-atmospheric interception scenario are summarized in Table 1.

Missile Target Kinematics Guidance

VI = 1600m/s VT = 1900m/s r0 = 3km n = 2
τI = 0.2sec aT = [−20, 0, 20]g θ0 = −20 deg τ = 0.2sec

τT = 0.2sec δ0 = −20 deg

Table 1. Simulation parameters for continuous case.

Three different scenarios are investigated: a non-maneuvering target, and targets performing constant
maneuvers of 20g or −20g. Fig. 3 presents the interceptor and target trajectories in an inertial coordinate
system. Despite the large initial heading error of 20 degrees, the interceptor gradually approaches the target
future trajectory and tracks it until it is caught up by the target.

In Fig. 4 the interceptor relative trajectories in target fixed coordinates are shown. It can be seen that
even in the presence of target maneuvers and initial heading errors interception is achieved with small θ as
required.

The missile acceleration profiles are plotted in Fig. 5. It can be observed that the acceleration approaches
that of the target as the two vehicles come nearer. In the case of a maneuvering target, the acceleration
difference at interception is due to the different speeds and turning radius of the two vehicles. The difference
in the scenario duration, due to the different interception trajectories, is also evident.

Finally, the value of the sliding function is shown in Fig. 6. After a short transient, σ is kept close to
zero up to the intercept point.

Next, the bang-bang controller of section IV.D is applied. We examine the same scenario for a non
maneuvering target as in the continuous case. The simulation parameters are summarized in Table 2.

Fig. 7 presents the interceptor and target trajectories in an inertial coordinate system. As for the case
with continuous unbounded controller, despite the large initial heading error of 20 degrees relative to the
direction required by the guidance law, the interceptor performs the HP interception. The radius of turn
for the bang-bang controlled interceptor is larger due to the saturated acceleration. Yet, as shown in Fig. 8,
interception is achieved with a very small heading error. The error in θ, due to the dead zone in the control
logic and the time delay, represents the design trade-offs between system cost and performance.

The acceleration profiles are plotted in Fig. 9. The bang-bang nature of the maneuvers is immediately
evident. The maneuver starts with initial thrusting in the negative direction followed by positive thrusting
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Figure 3. Inertial trajectories; continuous interceptor controller.

Missile Target Kinematics Guidance

VI = 1600m/s VT = 1900m/s r0 = 3km n = 2
T = 4000N aT = 0g θ0 = −20 deg q = 0.5
m0 = 40kg ∆̄aT = 3g δ0 = −20 deg ε = 0.05

Isp = 250sec

Table 2. Simulation parameters for discrete case.
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Figure 5. Missile acceleration profile; continuous unbounded interceptor controller.
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Figure 10. Sliding function; continuous and bang-bang interceptor controllers.

in order to decelerate and bring the interceptor to a halt in the lateral direction. When the desired flight
direction is reached, the controller maintains the flight course by short corrections, each time the directional
error exceeds the imposed limit. Note the increasing level of acceleration due to the propellant mass ex-
penditure. Finally, the sliding functions are shown in Fig. 10. In contrast to the continuous case, it is not
possible to bring the system to stay on the sliding surface. Rather, the controller keeps the interceptor close
enough to the surface to achieve the desired interception.

VI. Conclusions

Sliding mode guidance laws have been derived for both endo and exo atmospheric interceptors. It was
shown that the proposed guidance laws enable positioning an interceptor in front of a high speed target and
intercepting it in a novel head-pursuit geometry. Although the interceptor is planned to have a lower speed
than the target, interception can be achieved even if the target maneuvers and there are large initial heading
errors.

For the endo-atmospheric continuous implementation, the sliding mode guidance law allows bringing the
system to the chosen sliding surface, imposing the required geometric relations, and the system remains on
it as long as there are no target maneuvers and modeling errors. In the exo-atmospheric discrete, bang-bang,
implementation the system can not remain on the chosen sliding surface but is contained within a boundary
layer around it. Based on the required homing accuracy the width of the boundary layer can be chosen,
imposing restrictions on the bang-bang amplitude and frequency.
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